An Application for Tree Detection Using Satellite Imagery and
Vegetation Data

David T. Brown™ Roger V. Hoang™ Matthew R. Sgambatit*
Frederick C. Harris, Jr.™*

Department of Computer Science and Engineering™ Desert Research Institute*

University of Nevada, Reno

Reno, NV 89557

Reno, NV 89512

{dtbrown, hoangr, sgambati, Fred.Harris}@cse.unr.edu

Abstract

Virtual reconstruction of large landscapes from
satellite imagery can be a time-consuming task due to
the number of objects that must be extracted. Poor
image resolution and noise hinder automatic detec-
tion processes and thus must be corrected by the user.
This paper describes an application that allows the
user to guide the automatic detection of trees from
satellite imagery and spatial vegetation data. The re-
quirements of the system are specified and an architec-
ture that satisfies these constraints is presented. The
resulting application provides an intuitive computer-
aided method for the selection and classification of
trees.

1 Introduction

VFIRE [1, 3] is an immersive visualization applica-
tion being developed to study the behavior of wild-
land fires and to train fire crews to better combat this
phenomenon. Figure 1 is an example of the output
generated by the program. The system attempts to
generate realistic visualizations of simulated wildfires
over real-world locations by combining satellite im-
agery and other spatial data. In order to create an
accurate representation of the world, objects found in
the satellite imagery should be placed correctly in the
virtual world.

To do so, the type and location of these objects must
first be extracted from the images. Unfortunately, de-
termining this information for each individual object
can be a very complicated and time-consuming task,
especially due to the sheer number of objects such as
trees. Computer vision techniques to automate this
process can be effective. However, noise and other
factors inhibit the accuracy of these techniques, lead-

Figure 1: Fire visualization in progress

ing to false positives and false negatives. Therefore,
this application was developed to find the locations of
trees in an image.

Given that there are no constraints on the type, res-
olution, or geographic area of the image, the system
relies heavily on the judgment of the user to overcome
tree-detection difficulties that cannot be anticipated
or resolved within the algorithm. For this reason, the
application uses an interactive detection procedure in
which the user must be able to see what the system is
doing in order to effectively guide the process. A sig-
nificant portion of the program is devoted to the task
of letting the user see the current status of the oper-
ation and what needs to be done next. In addition,
a large portion of the program is devoted to allowing
the user to control the way that tree detection occurs
in order to minimize errors.

The remainder of this paper is structured as follows:

Section 2 outlines the requirements specification; Sec-
tion 3 details the use cases for the application; Section
4 gives an overview of the components used for the tree
detection algorithm; Section 5 discusses the relation-
ships between the major subsystems of the application;
Section 6 shows the results of the project; finally, Sec-
tion 7 draws some conclusions and suggests paths for
future work.

2 Requirements Specification
2.1 Functional Requirements

The functional requirements outline the necessary
components that allow for the user to manipulate the
view of the landscape, select candidate tree templates,
and refine the results of the tree detection algorithm.

1. The utility shall allow the user to load a photo-
graphic image of a geographic area.

2. The utility shall allow the user to display the pho-
tographic image.

3. The utility shall allow the user to zoom and scroll
the image.

4. The utility shall load vegetation cover, vegetation
type, and vegetation height maps if available.

5. The utility shall display vegetation map informa-
tion for user-specified locations.

6. The utility shall allow the user to display one of
the vegetation maps.
7. The utility shall allow the user to display one of
the vegetation maps on top of the image.
8. The utility shall allow the user to select image
regions to use as tree templates.
9. The utility shall allow the user to select one tem-
plate as the active template.
10. The utility shall allow the user to edit the active
template.
11. The utility shall allow the user to associate a
name, type, height, and width for each template.
12. The utility shall allow the user to place templates
into groups.
13. The utility shall allow the user to adjust tuning
parameters for tree detection.

14. The utility shall allow the user to filter the image
to produce a correlation image.

15. The utility shall allow the user to display the cor-
relation image.

16. The utility shall search the correlation image for
trees.

17. The utility shall search only within the region cur-
rently in view.

18. The utility shall place a mark at each location
where a tree is detected.

19. The utility shall allow the user to place a tree
mark in any location

20. The utility shall allow the user to mark any loca-
tion as the location of an artificial structure.

21. The utility shall allow the user to delete any mark
from any location.

22. The utility shall allow the user to save all data in
a project folder.

23. The utility shall allow the user to load a project
from an existing project folder.

24. The utility shall allow the user to output all item
locations to a file usable by V-FIRE.

25. The utility shall allow the user to create rough
tree placements based only on vegetation maps.

26. The utility shall mark tree placements made based
on veg map data.

27. The utility shall allow the user to output map-
based tree placements to a file usable by V-FIRE.

2.2 Nonfunctional Requirements

The nonfunctional requirements reflect some of the
goals and constraints of the project, such as the use
of C++ for optimum speed and the direct implemen-
tation of graphics display functions to maintain total
control over memory consumption, which is of concern
when viewing very large images.

1. The utility shall directly implement graphics to
create and manage templates.

2. The utility shall directly implement graphics to
display, scroll, and zoom image.

3. The utility shall use bilinear interpolation to zoom
into and out of the image.

4. The utility shall swap correlation images to and
from disk to match currently active template.

5. The utility shall use the brightness component of
the image for tree detection.

6. The utility shall perform contrast stretching on
the correlation image.

7. The utility shall be implemented on the Linux
platform.

8. The utility shall be written in C++.
9. The utility shall use GDAL to read image files.
10. The utility shall use FLTK for its GUI.

3 Use Cases

The operations commonly used in the tree-detection
process are shown in Figure 2. The use cases show
that the user is given the flexibility to decide at run-
time which geographic images to analyze, which com-
bination of images to view at any moment, and which
image to use as the source for any tree placements that
are made. The user creates a template by drawing a
highlighting mark over a particular tree.

Each template is given a name, as well as a nominal
height and width. This data is eventually placed in the
output file for every tree detected using that template.
The user can determine the approximate height and
width either by visual inspection of the photographic
image or by clicking on the image at the location of
the template to view data from the vegetation maps.

Multiple templates can be created for a single
project, and the user can click on any existing tem-
plate to select it as the active template. Subsequently,
the user can filter the image using the active template
to produce a correlation image. The system then scans
the correlation image for bright spots, corresponding
to likely trees. Finally, the system places a mark at
the location of each tree detected. The user may then
choose to have the current set of tree marks placed in
an output file and stop the process or make changes
to improve the accuracy and repeat the process.

Item Placement Utility

Load Images

Select Image
to View

Set Tuning Parameters
for Active Template

Filter Image Using
Active Template

Scroll or Zoom Image
Ianually Add or
Delete Item Marker

y Click Image to Show
Vegetation Map Data
Load or Save Project

Create or
Modify Template

User

Place Trees Using
Wegetation Maps

Select Active Template

Output ltem
Locations ta File

Sel Name and Data
for Active Template

Figure 2: Use Cases

4 Classes

Although the goal of this project is complex from an
image analysis perspective, most of the data types used
are fairly simple arrays of numbers. Therefore, only
six classes are needed, and the classes are completely
independent with no inheritance. Figure 3 shows the
classes used in this project.

Image Attribute Point ItemRef ItemGroup Objectl0

Figure 3: Classes used by application

An instance of the Image class is used to store the
main image used in a tree-detection project. This is
generally expected to be a photographic image of the
area of interest, though other types of images can be
used as long as they possess the same metadata. In
addition, the system also uses three other instances of
the Image class. The first of these is used to allow
viewing of a vegetation map (if any), the second of
these is used to allow viewing of the vegetation map
simultaneously with the photographic image, and the
third of these is used as a work space to hold tem-
porary image data. Image class objects contain the
raster data for the image as well as the georeferencing
data that associates each location in the image with
its corresponding location on the Earth’s surface. The
Image class also contains the information to let the
display system know how to display the image, such
as the current scroll position, zoom level, and whether
the display buffer needs to be refreshed.

Instances of the Attribute class are used to store the
vegetation maps for the system. Each vegetation map
is stored as a raster of vegetation codes. The mean-
ing of each code is stored in data tables contained in
each instance of the class. For each possible vegetation
code, the data tables give the associated display color.
In addition, data tables also translate vegetation codes
into information such as dominant vegetation type,
percentage of vegetation cover, or vegetation height,
depending on which vegetation map file the Attribute
instance is being used to store. The display system
is not designed to use objects of the Attribute class.
Therefore, vegetation maps are not displayed directly.
Instead, the pattern of display colors associated with
the raster of vegetation codes is scaled and copied to an
object of the Image class, which is then displayed. The
vegetation map can be copied onto a blank Image ob-
ject or it be can mixed with photographic data already
present in the Image object to produce an overlay of
the vegetation map over the photographic image.

The Point class is used to keep track of individual
pixels in an image. Each instance of the Point class
stores the horizontal and vertical location of a single
pixel, as well as its three color components. Multiple
instances of the Point class are used to form templates.

Each instance of the ItemRef class is used to store
an image template. ItemRef is a container class for
objects of the Point class. Such collections of Point
objects constitute the image templates that are used
as filter masks to produce correlation images which are
then scanned for bright spots corresponding to tree lo-
cations. ItemRef also contains the tuning parameters
that govern which bright spots in the correlation im-
age qualify as trees. These parameters determine how
bright the spot must be, how wide it must be, and
how much brighter it must be than the surrounding
image. ItemRef also stores information about the area
covered by each template. When the user chooses to
filter an image, only the portion of the image currently
in view is filtered, allowing the user to quickly test the
accuracy of a newly created or newly altered template
without waiting for the entire image to be processed.
Finally, ItemRef stores a name, nominal height, and
nominal width to be associated with any tree detected
using that particular template.

ItemGroup is a container class for objects of the
TtemRef class. The purpose of ItemGroup is to allow
templates to be placed into separate groups, of which
only one group is visible at a time. This allows the
user to decide which templates and corresponding tree
marks will be visible simultaneously with others and
which ones will not. If the user wants a particular
template and its associated tree marks to be seen only
by itself, without any others on the screen at the same
time, then this template should be placed into its own
separate instance of ItemGroup.

ObjectIO is the class used to read and write the
binary tree-location files used by VFIRE. Instances of
the ObjectlO class are used to write the geographic
coordinates of each tree along with its height, width,
and type. All the information is written in binary form
to save disk space. ObjectIO can also be used to read
this data from VFIRE.

5 Program Subsystems

This project consists largely of global functions
rather than class methods. The functions that display
images could have been included with the Image class,
but the current configuration is very intuitive. A large
collection of global functions, together, constitute the
graphics display subsystem, and the graphics display
subsystem accepts data from a small, fixed number
of Image objects. The process of displaying images

<= subsystem=>

""""""""""""""" GUI
<<subsystem>>
Algorithm
V '
] 00 [Teyetemss ! ey
‘ -)
Graphics |[«---{ Template File 1/0
-
! '
e e e e e e e !
v
cembeystems= | [==sul bsystem s> | —<subsystem>> |
{global}
C++ GDAL FLTK

Figure 4: System Structure

is straightforward and predictable in terms of which
operations will be performed on which class objects.
Figure 4 shows the arrangement of subsystems.

The File I/O subsystem consists of several functions
that read and write the files used by the system. Veg-
etation map files and GeoTIFF [4] image files are read
by the system but never written. Tree-location files
are written by the system but never read. Project data
files and correlation image files are read and written
by the system. GeoTIFF files are usually photographic
images, and the File I/O subsystem relies on GDAL [2]
to read these files. GDAL has the ability to read and
write other types of files, but this project currently
uses it only for GeoTIFF files.

The Template subsystem is a set of functions that
allow the user to create, edit, and manage the tem-
plates used for tree detection. The user creates tem-
plates by using the mouse pointer to draw highlighting
marks on the desired portion of the image. The Tem-
plate subsystem keeps track of which pixels have been
highlighted, which template the pixel belongs to, and
which group the template belongs to. Asshown in Fig-
ure 4, the template subsystem relies on the graphics
subsystem to draw the marks. The template subsys-
tem also keeps the data in the active template current
as the zoom level or other view conditions change.

The Graphics subsystem includes all the functions
that display images on screen through FLTK [5]. The
Graphics subsystem can only process objects of the
Image class, and to avoid running out of memory, this
project uses only four instances of the this class. The
first instance stores the original image. The second
stores the original image mixed with the color pattern
of one of the vegetation maps. The third stores the
color pattern of the vegetation map by itself, and the

third is a work space used for temporary storage of
correlation images and to show tree placements made
using vegetation map data alone. The graphics subsys-
tem is always set to display one of these Image objects.
The object being displayed at any particular time de-
pends on the current view settings selected by the user.
The need to display highlighting marks for the tem-
plates adds complexity to the display subsystem, and
the need to display, at times, very large images adds
further complexity. However, the graphics subsystem
always displays one of the four Image objects listed
above.

The functions in the Algorithm subsystem use the
available templates and user-controlled tuning param-
eters to detect the locations of trees within the im-
age. This is done by filtering the image with the ac-
tive template to produce a correlation image in which
the brightness at any location varies directly as the
similarity between the pixels in the template and the
pixels in the corresponding neighborhood in the im-
age. There are many ways to calculate the correlation
values, but in this implementation, each pixel in the
correlation image is calculated by taking the average
difference between the two sets of pixels and subtract-
ing this value from 255. Once the correlation image is
produced, it is scanned for bright spots and they are
marked as likely trees according to the current settings
of the tuning parameters.

6 Results

Figure 5 shows a screenshot of the developed appli-
cation without any detected trees. The user can zoom
into a particular area as shown in Figure 6, allowing
the user to more easily outline a template used for tree
detection. As the user selects template pixels in the
image, they are highlighted as seen in Figure 7.

Once a template is created, the tree detection algo-
rithm finds all objects that match the template to some
user-specified threshold. The centers of the matches
are then displayed as red dots like those shown in Fig-
ure 8. False positives can then be removed and missed
trees added by the user.

The user is also allowed to have the application au-
tomatically generate randomized tree locations based
on fuel data. This feature is useful for areas where
trees cannot be detected due to shadows and/or poor
image quality. Figure 9 demonstrates this function.

7 Conclusions

Detection of trees from images of large forested
landscapes can be an extremely time-consuming task.

Figure 6: Enlarged view of tree centered in window

While automation is possible through computer vision,
factors such as image resolution and noise generate in-
accuracies. Thus, an application was developed that
combines automation with user input to compensate
for these problems. Despite the simplicity of the archi-
tecture, the application described in this paper effec-
tively allows any user to quickly and straightforwardly
detect trees by specifying templates and other param-
eters.

In the future, using the utility could be made easier
by allowing the user to choose the highlighting color
used to specify templates. As shown in Figure 7, light
green is currently used as the highlighting color, but
this color could be difficult to see in images containing
significant amounts of similar colors. In addition, it
would be helpful to allow the user to cancel the filtering
process. There is currently an indicator to show the
current level of progress but no way of aborting the
process prematurely.

Figure 8: Likely trees marked after processing

Currently, this project is used mainly to detect trees
and other vegetation. Ideally, it could have been used
in a more general capacity, to detect any type of item
including but not limited to vegetation. In particular,
the ability to detect houses and buildings would be
desirable.

Acknowledgements

This work was funded by the STTC CAVE Project
(ARO# N61339-04-C-0072) at the Desert Research In-
stitute.

References

[1] Michael A. Penick. Vfire: Virtual fire in realis-
tic environments. Master’s thesis, University of

Figure 9: Random tree placements made according to
vegetation data. Different colors represent different
types of vegetation. The circles denote the location
and size of trees generated.

Nevada Reno, Department of Computer Science
and Engineering, Reno, NV 89557, May 2007.

[2] Open Source Geospatial Foundation. ~GDAL:
GDAL - geospatial data abstraction library. http:
//www.gdal.org/formats_list.html (Accessed
July 10, 2008).

[3] M.A. Penick, R.V. Hoang, F.C. Harris Jr, S.M.
Dascalu, T.J. Brown, W.R. Sherman, and P.A. Mc-
Donald. Managing Data and Computational Com-
plexity for Immersive Wildfire Visualization. Pro-

ceedings of High Performance Computing Systems
(HPCS’07).

[4] N. Ritter, M. Ruth, B.B. Grissom, G. Galang,
J. Haller, G. Stephenson, S. Covington, T. Nagy,
J. Moyers, J. Stickley, et al. GeoTIFF format speci-
fication GeoTIFF revision 1.0. NASA, Jet Propul-
sion Laboratory, Pasadena, CA, and SPOT Im-
age, Reston, Virginia (http://www-mipl. jpl. nasa.
gov/cartlab/qgeotiff/geotiff. html), 1995.

[5] B. Spitzak et al. FLTK-The Fast Light Tool Kit.
URL: http://www. fltk. org.

